

Objectives of WP 3 – oxyfuel calciner

- Evaluation of the **role of the flue gas moisture level** in the calciner **to reduce and control the calcination temperature**. Theoretical and experimental calcination tests will be preformed up to pilot-scale in a process relevant environment (TRL 6).
- Based on the results a moisture injection concept and process control strategy for retrofitted and newbuild cement plants will be developed
- The impact of the process conditions and flue gas **impurities like sulfur** and **chlorine** on calcination reaction will be evaluated at technical- and pilot-scales
- Evaluation of oxyfuel calcination process with up to 100% alternative fuel combustion in an oxyfuel calciner

WP - Partner	USTUTT	University of Stuttgart
	AL	Air Liquide
	TITAN	TITAN Cement Company S.A.
	VDZ	VDZ gGmbH
	tkIS	thyssenkrupp Industrial Solutions AG

| 07. + 08.03.2023 | Public Workshop – ANICA/ AC2OCem

Technical- and pilot-scales facilities for calcination test

Accelerating

AC²OCem

| 07. + 08.03.2023 | Public Workshop – ANICA/ AC2OCem

WP3.1 Technical scale - Influence of moisture content on degree of calcination

- up to 10% increase in calcination with add. water-vapour
- positive influence appears to have certain threshold of moisture content

 with addition of 20% water vapour: 50°C lower calcination temperature to reach same calcination degree

WP 3.2 Pilot scale - Influence of moisture content on degree of calcination

CONCLUSION: The experimental results of both test setups showed that an additional increase in gas moisture, above that already provided by the combustion of coal and alternative fuels (16-24%), is not reasonable.

| 07. + 08.03.2023 | Public Workshop – ANICA/ AC2OCem

Accelerating

AC²OCem

WP3.1 Technical scale – Impact of impurities (sulfur and chlorine)

<u>Adding:</u> KCI (4%wt) and SO $_2$ (0.16-vol-%) to calciner environment

| 07. + 08.03.2023 | Public Workshop – ANICA/ AC2OCem

WP3.1 Technical scale – Impact of impurities (sulfur and chlorine)

- Oxyfuel cases show higher mass accumulation than corresponding AF cases, probably relate to temperature
- ~99% SO₂ capture for both cases (AF, OF) with SO₂ load indicated in the diagram
- Sulphur was observed mainly around Ca-rich particles
- Chlorine- or Potassium compounds were not observed in particles

lfk

WP 3.2 Pilot scale - Impact of impurity (sulfur)

SO₃ (LOI free) - %

0.3

Ca_AI_0[O12|SO4]

K2[SO4]

CaSO₄

K₂Mg₂[SO₄]₅

% Yeelimite

% Langbeinite

% Anhydrite

% Arcanite

WP 3.3 Pilot scale – Alternative fuel – oxyfuel calciner

Substitution rate

- \rightarrow Low CO increase, due to CO₂ presence
- \rightarrow NOx decrease
- \rightarrow Combustion **completed**, no AF present in the ashes

WP 3.3 Pilot scale – oxyfuel calciner usage of alternative fuels

 \rightarrow Acceptable temperatures for a precalciner

☑ Thermocouple position at 175 cm to be improved

- → 100% of AF substitution with good condition in the combustion chamber, only a small change in the thermal profile
- \rightarrow Combustion stability

Air Liquide R&D - WP3.3 Results Marche 2023

Conclusions of WP 3 – oxyfuel calciner

- Evaluation of the role of the flue gas moisture level in the calciner is done (TRL 6).
- Moisture injection concept: The experimental results of both test setups showed that an additional increase in gas moisture, beyond the level already obtained by burning coal and alternative fuels (16-24%) is not reasonable.
- The impact of flue gas impurity sulfur:
 - It can be assumed that, for the same degree of calcination, the sulfur incorporation in the calciner in the oxyfuel case is similar to that in the conventional operation.
 - Due to higher calciner temperature in oxyfuel process, the risk of deposit formation increases.
- In industrial oxyfuel plants, the arrangement of the **meal split** and **fuel split** plays an important role in avoiding hot spots and reducing the risk of deposits.
- Up to 100% of AF (RDF) can be used in an oxyfuel-precalciner

 \rightarrow for AF with a lower quality more test have to be done

| 07. + 08.03.2023 | Public Workshop – ANICA/ AC²OCem

Thank you to our funding agencies

AC²OCem is funded through the ACT program (Accelerating CCS Technologies, Horizon2020 Project No 299663).

Financial contributions, from the following agencies, are gratefully acknowledged

- Research Council of Norway, (RCN), Norway
- Federal Ministry for Economic Affairs and Energy (BMWi), Germany
- Swiss Federal Office of Energy (SFOE), Switzerland
- General Secretariat for Research and Development (GSRT), Greece
- French Environment & Energy Management Agency (ADEME), France

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Federal Office of Energy SFOE

European Structural and Investment Funds

Thank you for your attention! Questions?

ITK OAirLiquide thyssenkrupp

