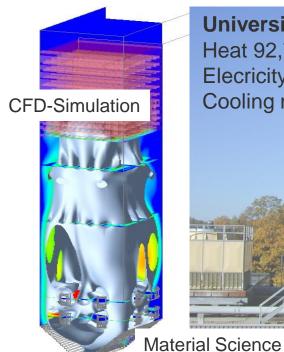
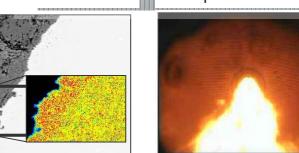


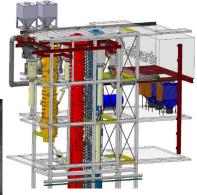
Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

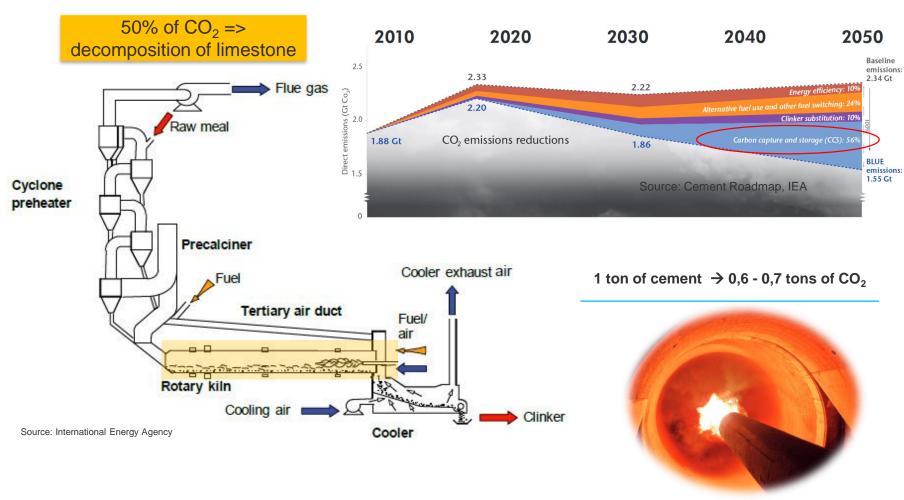


Energy Infrastructure and Tools at IFK

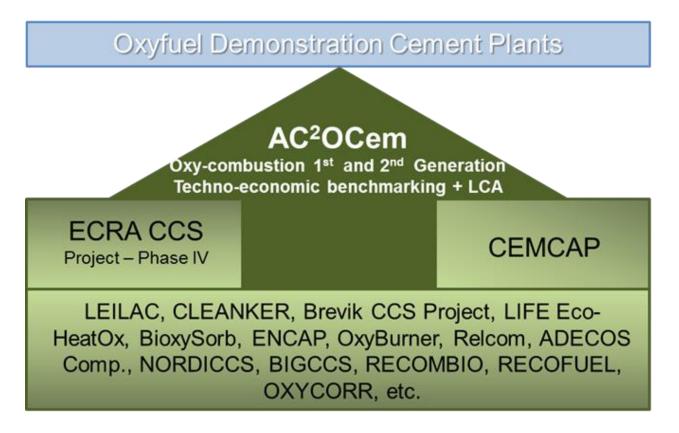


University of Stuttgart Germany





PC-Oxyfuel 500 kW_{th}


 350 kW_{th} **Dual CFB system**

Motivation

Recent research relevant to AC²OCem

Relation to other CCUS and oxyfuel projects

AC2OCem - Project Data

 Project name: Accelerating Carbon Capture using Oxyfuel technology in Cement production

Project Duration: 36 months (starting on 1 October 2019)

• ACT Project No.: 299663

• Total budget: **4.273.911 euros**

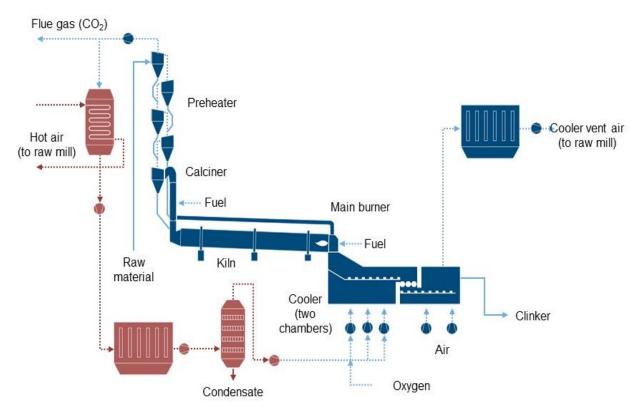
Financial source (in €)	
In-kind from project partners	984.437
Industry financial contribution	247.200
Applied Funding from national ACT bodies	3.042.274
Total	4.273.911

11 Project Partners from 5 European Countries

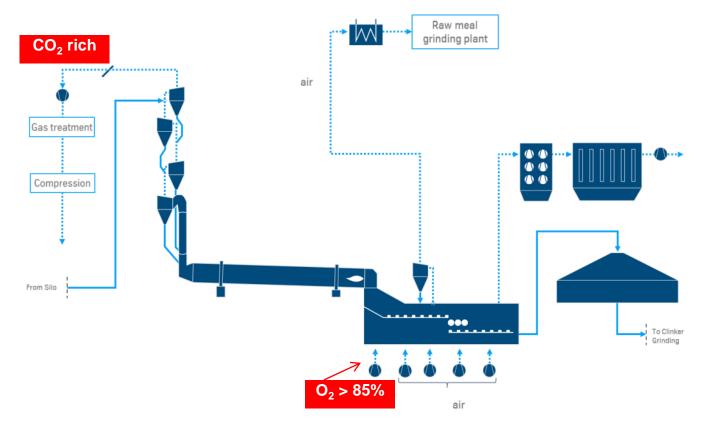
AC²OCem Partners

- Universität Stuttgart, Germany
- SINTEF Energy Research, Norway
- Norwegian University of Science and Technology NTNU, Norway
- VDZ GmbH, Germany
- Center of Research and Technology CERTH, Greece
- thyssenkrupp Industrial Solutions AG, Germany 6.

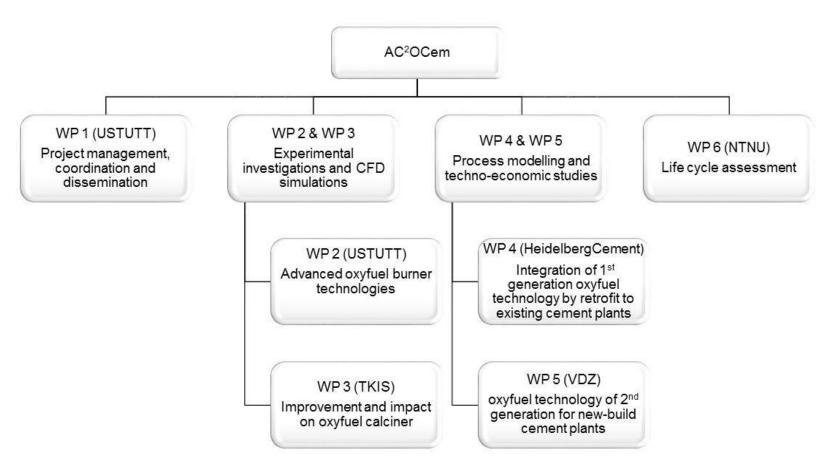
HEIDELBERGCEMENT


- HeidelbergCement AG, Germany
- 8. LafargeHolcim, Switzerland
- TITAN Cement Company S.A., Greece
- L'AIR LIQUIDE, France
- 11. Total Norge AS, Norway

AC²OCem Project Objectives


- Optimization of the oxyfuel cement process with the ultimate goal of lowering the CO₂
 avoidance cost
- Advancing the 1st & 2nd generation oxyfuel technology for utilization of up to 100% alternative fuels, boosting CO₂ negative cement plants (Bio-CCS).
- Retrofitability and Techno-economic analysis of two selected demo oxyfuel plants in the frame of the ECRA CCS project, supporting transfer from TRL 6 to TRL 8
- Developing and Testing a novel oxyfuel concept, promoting this technology to the 2nd generation for new-build cement plants without flue gas recycle (up to TRL 6)
- Experimental and analytical investigations of the 2nd generation oxyfuel technology, associated with a high reduction potential of energy demand, CAPEX and OPEX
- Life cycle assessments the environmental sustainability aspects of oxyfuel cement plants through

1st generation oxyfuel cement plant

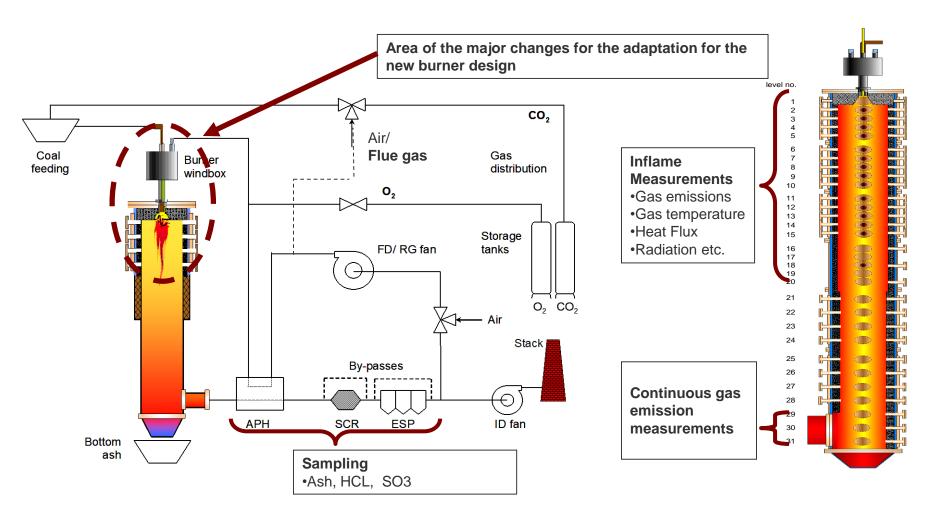

Schematic diagram of a 1st generation oxyfuel cement plant

2nd generation oxyfuel cement plant

Schematic diagram of a 2nd generation oxyfuel cement plant without flue gas recirculation circuit

AC²OCem work package structure

Work topics of WP 2: Advanced oxyfuel burner/ combustion technologies

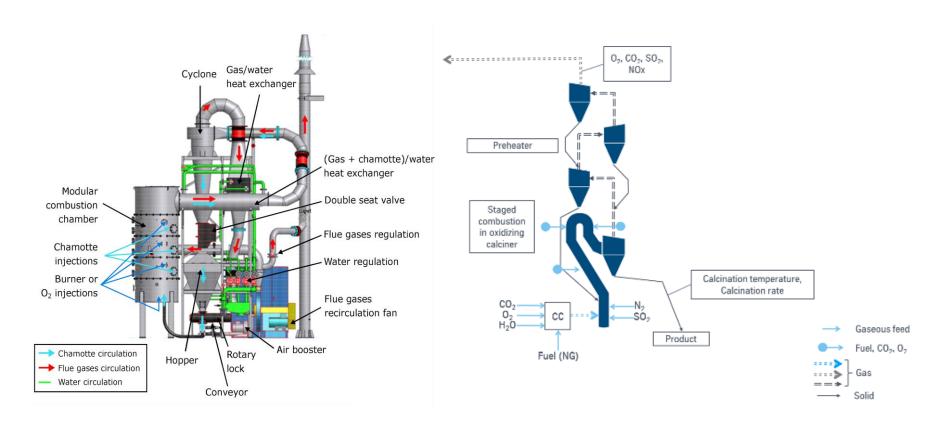

Task 2.1: **Pilot-scale demonstration** tests of an advanced oxyfuel burner with selected oxygen enrichment for **up to 100% alternative** fuel Bio-CCS, 1st generation (**USTUTT**, HeidelbergCement, LafargeHolcim, TKIS, TITAN)

Task 2.2: CFD simulations of the prototype burner for 1st generation oxyfuel technology (CERTH, TKIS, USTUTT)

Task 2.3: Pilot-scale demonstration tests of prototype oxyfuel burner with the novel concept of up to 100 % oxygen and without flue gas recycle (2nd generation oxyfuel technology). (USTUTT, AL, HeidelbergCement, LafargeHolcim, SINTEF, TKIS, TITAN)

Task 2.4: CFD simulations of the prototype burner for 2nd generation oxyfuel technology (SINTEF, TKIS, USTUTT)

WP 2: Air-Oxyfuel Test Facility at IFK (500kWth)


Work topics of WP 3: Improvement and impact on oxyfuel calciner

Task 3.1: Technical-scale **parametric study** to evaluate the impact of flue gas composition and impurities on calcination under oxyfuel conditions (**USTUTT**, TKIS, TITAN, VDZ)

Task 3.2: Demonstration of the calcination test under oxyfuel atmosphere in a pilotscale calciner and pre-heater (TKIS, TITAN, USTUTT)

Task 3.3: Demonstration of up to 100 % alternative fuel combustion in a pilot-scale oxyfuel calciner (AL, TITAN, USTUTT)

WP 3: Schemes of pilot scale oxyfuel calciner facility from Air Liquide & TKIS

Schemes of pilot scale oxyfuel calciner facility from Air Liquide & TKIS

Work topics of WP 4: Integration of 1st generation oxyfuel technology by retrofit to existing cement plants

- **Task 4.1**: **Design considerations** for retrofitted oxyfuel cement plants (**VDZ**, CERTH, HeidelbergCement, LafargeHolcim, SINTEF, TKIS, TITAN)
- **Task 4.2**: **Process simulations** of different flue gas recirculation scenarios and fuel mixes in oxyfuel retrofitted cement plants (**VDZ**, CERTH, HeidelbergCement, LafargeHolcim, SINTEF...)
- **Task 4.3**: Assessments of **flue gas impurities** and residual streams in the oxyfuel retrofitted cement plant (**CERTH**, LafargeHolcim, TKIS, USTUTT, VDZ)
- **Task 4.4**: Process simulations of the **influence of moisture** content in the raw material on process design and waste heat recovery (**VDZ**, HeidelbergCement, LafargeHolcim, SINTEF)
- **Task 4.5**: Detection and control of **air ingress** for plant optimization (**HeidelbergCement**, LafargeHolcim, SINTEF, TKIS, TITAN, VDZ)
- **Task 4.6**: **Techno-economic evaluation** of a retrofitted oxyfuel cement plant (**SINTEF**, AL, CERTH, HeidelbergCement, LafargeHolcim, TKIS, TITAN, TOTAL, VDZ)

Work topics of WP 5: Oxyfuel technology of 2nd generation for new-build cement plants

Task 5.1: **Design considerations and process simulations** for new-build oxyfuel cement plants (**TKIS**, AL, HeidelbergCement, LafargeHolcim, SINTEF, TITAN, VDZ)

Task 5.2: Evaluation of the **impact of scale** in new-build oxyfuel cement plants (**VDZ**, HeidelbergCement, LafargeHolcim, SINTEF, TKIS, TITAN)

Task 5.3: Evaluation of **techno-economic feasibility** of new-build 2nd generation oxyfuel cement plants (**SINTEF**, AL, HeidelbergCement, LafargeHolcim, TKIS, TITAN, VDZ)

Work topics of WP 6: Life cycle assessment (LCA)

Task 6.1: Gathering and **synthesis of primary data** (**NTNU**, HeidelbergCement, LafargeHolcim, SINTEF, TKIS, USTUTT, VDZ)

Task 6.2: Life cycle assessment of 1st generation and new-build 2nd generation oxyfuel cement plants (NTNU, HeidelbergCement, LafargeHolcim, Titan, SINTEF, TKIS, USTUTT, VDZ, CERTH)

Task 6.3: Quantification of the contributions in terms of net potential for carbon capture and storage of these technological solutions. (NTNU, VDZ)

AC²OCem Project Gantt Chart 1

		Months		1	2	3	4	5	6	7	8	9	10	11	12
WPI															
Task	Work package/task name	Lead Partner													
WP 1	Project management, coord., & dissemination	USTUTT													
1.1	Project Management, coord. & communication	USTUTT		M1.2	D1.1		D1.2							M1.3	
1.2	Dissemination and exploitation of project results	USTUTT													
1.3	Increasing public awareness of CCUS in industry	USTUTT													
WP 2	Advanced oxyfuel burner technology	USTUTT													
2.1	Pilot-S. Tests with selected 02 % for alt. fuel co-combustion (1st gen.)	USTUTT					M2.1			M2.2	M2.3		M2.4		
2.2	CFD simulations of the prototype burner 1st gen.	CERTH													
2.3	Pilot-S. Tests with up to 100% O2 without flue gas recycle (2nd gen.)	USTUTT													
2.4	CFD simulations of the prototype burner 2nd gen.	SINTEF													
WP 3	Improvement and impact on oxyfuel calciner	TKIS													
3.1	TechS. evaluation of flue gas comp. on calcination under oxyfuel cond.	USTUTT				M3.1					M3.2				
3.2	Pilot-S. demo of 3.1 in calciner and pre-heater	TKIS													
3.3	Demo, of up to 100 % alt, fuel combustion in a pilot-S, oxyfuel calciner	AL												M3.3	
WP 4	Integration of 1st gen. Oxyfuel tech. By retrofit to existing cement plant	HeidelbergCo	ement												
4.1	Design considerations for retrofitted oxyfuel cement plants	VDZ			M4.1		M4.2					M4.4		M4.5	D4.1
	Process simulations of diff. flue gas recirc, scenarios and fuel mixes in oxyfuel retrofitted cem	ent											- ↓		
4.2	plants	VDZ											·		
4.3	Assessments of flue gas impurities and residual streams in the oxyfuel retrofitted cement pla Process simulations of the influence of moisture content in the raw material on process design		neetir	ng ai	nd te	mpla	ate fo	r de	livera	ables	dist	ribut	ion		
4.4	heat recoveru	VDZ													
	Detection and control of air ingress for plant optimization	HeidelbergCem	nent		D1.1	1 Pro	oject '	Web	site	publi	cly a	ıvaila	able		
	Techno-economic evaluation of a retrofitted oxyfuel cement plant	SINTEF													
WP 5	Oxyfuel technology of 2nd generation for newbuild cement plants	VDZ	MO	10	DE a	boro	otori	-otio	n to	sts st	orto	٦			
5.1	Design considerations and process simulations for new-build oxyfuel cement plants	TKIS	IVIZ	.13	KF C	nara	icten.	zalio	n tes	SIS SI	ane	u			
5.2	Evaluation of the impact of scale in new-build oxyfuel cement plants	VDZ													
	· · · · · · · · · · · · · · · · · · ·		M3.	.1 C	alcin	ation	n Fac	cility	adar	otatio	ns s	tarte	d		
5.3	Evaluation of techno-economic feasibility of new-build 2nd generation oxyfuel cement plants	SINTEF													
WP 6	Life cycle assessment (LCA)	AITAUI													
	Gathering and synthesis of primary data	M2.2 Commiss	sionin	g of	1st	gene	ratio	n ox	vfue	burr	ner a	nd fa	acility	/	
	Life cycle assessment of retrofitted 1st generation and new-build 2nd generation oxufuel ceme			_											
6.2	plant M4.1 Process model build-up of		tion p	roc	ess,	heat	integ	gratio	on ar	nd CF	PU s	tarte	d		
6.3	Quantification of the contributions in terms of net potential for CCS of these technological solu	tions NTNU													

Acknowledgments

This project has received an ACT grant.

This is provided nationally by ADEME in France, FZJ/PTJ in Germany, GSRT in Greece, RCN in Norway and DETEC in Switzerland

Thank you!

Dipl.-Ing. Jörg Maier

e-mail joerg.maier@ifk.uni-stuttgart.de

phone +49 711 685-63396

fax +49 711 685-63491

University of Stuttgart
Institute of Combustion and Power Plant Technology
Pfaffenwaldring 23 • 70569 Stuttgart • Germany

